Lecture: Cost of Capital and Tax Rate

Lutz Kruschwitz \& Andreas Löffler

Discounted Cash Flow, Section 4.2

Remark: The slightly expanded second edition (Springer, open access) has different enumeration than the first (Wiley). We use Springer's enumeration in the slides and Wiley's in the videos.

Outline

4.2 Excursus: cost of capital and tax rate The problem Usually stated
An arbitrage opportunity Duplication
Summary

The problem

Up to now we have looked for the firm's value given the tax rate.

Now we ask for a varying tax rate τ.
This boils down to the question of how cost of capital $k^{E, u}$ changes with τ.
(Remember: $k^{E, u}$ is post-tax!)

Usually stated (Johansson 1969)

affected by the presence of investor taxes. Let τ, be the tax rate investors pay on equity income (dividends) and $\tau_{\text {, }}$ be the tax rate investors pay on interest income. Then, given an expected return on debe r_{D}, define r_{D}^{*} as the expected return on equiry income that an expected return on debr r_{D}, define r_{D} would give investors the same after-tax return:

$$
r_{D}^{*}\left(1-\tau_{j}\right)=r_{D}\left(1-\tau_{i}\right)
$$

So

$$
r_{D}^{*}=r_{D} \frac{\left(1-\tau_{c}\right)}{\left(1-\tau_{C}\right)}
$$

(18.23)

Because the unlevered cost of capital is for a hypotherical firm that is all equiry.
Berk/DeMarzo: Corporate Finance, 2007

The literature on valuation suggests a relation between cost of equity post-tax $k^{E, u}$ and tax rate τ where

$$
\begin{equation*}
k^{E, u}=k^{E}(1-\tau) . \tag{4.6}
\end{equation*}
$$

k^{E} is sometimes interpreted as 'cost of capital before-tax'.

Important is only the linearity: For example, increasing the tax rate from 0% to 50% lowers cost of capital by one half.

Nevertheless, this equation is very problematic.

Example

Look at a company that

- lives infinitely,
- has constant expected cash flows,
- no retainments and no investments.

For such a firm

$$
\begin{equation*}
\widetilde{F C F}_{t}^{\mathrm{u}}=\widetilde{G C F}_{t}(1-\tau) \tag{4.5}
\end{equation*}
$$

holds, which is very convenient.
(Assumptions has to be made about gross instead of free cash flows because the tax rate will change.)

Valuation equation

Then

$$
\widetilde{V}_{t}=\frac{\widetilde{F C F_{t}^{u}}}{k^{E, u}}
$$

and from (4.5) with (4.6)

$$
\begin{equation*}
\widetilde{V}_{t}=\frac{\widetilde{F C F}_{t}^{u}}{k^{E, u}}=\frac{\widetilde{G C F}_{t}(1-\tau)}{k^{E}(1-\tau)}=\frac{\widetilde{G C F}_{t}}{k^{E}} . \tag{4.7}
\end{equation*}
$$

The personal income tax rate cancels! Personal taxes do not seem to have an influence on company value.

Stochastic structure of gross cash flows

Consider our infinite example with gross cash flows following up with subjective probability $P(u)$, down with $P(d)$.

Free cash flows weak autoregressive

Gross cash flows (before tax!) are weak autoregressive.
Are free cash flows (post tax!) weak autoregressive as well?

$$
\begin{aligned}
\mathrm{E}\left[\widetilde{F C F}_{t+1}^{\mathrm{u}} \mid \mathcal{F}_{t}\right] & =\mathrm{E}\left[(1-\tau) \widetilde{G C F}_{t+1} \mid \mathcal{F}_{t}\right] \\
& =(1-\tau) \mathrm{E}\left[\widetilde{G C F}_{t+1} \mid \mathcal{F}_{t}\right] \\
& =(1-\tau) P(u) u \widetilde{G C F}_{t}+(1-\tau) P(d) d \widetilde{G C F}_{t} \\
& =(\underbrace{P(u) u+P(d) d}_{:=1+g})(1-\tau) \widetilde{G C F}_{t} \\
& =(1+g) \widetilde{F C F}_{t}^{\mathrm{u}} .
\end{aligned}
$$

Yes!

The market

Now consider two firms

	firm A	firm A^{\prime}
up and down factor	u, d	u^{\prime}, d^{\prime}
gross cash flows	$\widetilde{G C F}_{t}$	$\widetilde{G C F}_{t}^{\prime}$
firm values	\widetilde{V}_{t}	$\widetilde{V}_{t}^{\prime}$
cost of capital	k	k^{\prime}
growth rate	$g \stackrel{!}{=} 0$	$g^{\prime} \stackrel{!}{=} 0$

The up- and down-movements of both cash flows are perfectly correlated with probability $P(u)$ and $P(d)$.

Duplication

There is one riskless bond with value B_{t} at time t. The riskless interest rate after tax is $r_{f}(1-\tau)$. We now duplicate the payments of firm A^{\prime} by a portfolio of \mathbf{A} and bond.

This portfolio contains

$$
\begin{aligned}
& n_{B}:=\text { bonds and } \\
& n_{A}:=\text { shares of firm } A
\end{aligned}
$$

such that its payments equal the dividend of A^{\prime}. Or,

$$
\begin{aligned}
n_{B} B_{t}\left(1+r_{f}(1-\tau)\right)+n_{A}\left(\widetilde{G C F}_{t+1}\right. & \left.(1-\tau)+\widetilde{V}_{t+1}\right) \\
& =\widetilde{G C F}_{t+1}^{\prime}(1-\tau)+\widetilde{V}_{t+1}^{\prime}
\end{aligned}
$$

Duplication

To determine n_{A} and n_{B} we use (4.7) and this gives

$$
\begin{aligned}
n_{B} B_{t}\left(1+r_{f}(1-\tau)\right)+n_{A}\left(1+k_{t+1}\right. & (1-\tau)) \widetilde{V}_{t+1} \\
& =\left(1+k_{t+1}^{\prime}(1-\tau)\right) \widetilde{V}_{t+1}^{\prime}
\end{aligned}
$$

or, given the stochastic structure,
$n_{B}\left(1+r_{f}(1-\tau)\right) B_{t}+n_{A}(1+k(1-\tau)) u \widetilde{V}_{t}=\left(1+k^{\prime}(1-\tau)\right) u^{\prime} \widetilde{V}_{t}^{\prime}$
$n_{B}\left(1+r_{f}(1-\tau)\right) B_{t}+n_{A}(1+k(1-\tau)) d \widetilde{V}_{t}=\left(1+k^{\prime}(1-\tau)\right) d^{\prime} \widetilde{V}_{t}^{\prime}$.

Duplication

This is a 2×2-system that can easily be solved:

$$
\begin{aligned}
& n_{B}=\frac{\widetilde{V}_{t}^{\prime}}{B_{t}} \frac{\left(u-u^{\prime}\right)\left(1+k^{\prime}(1-\tau)\right)}{u\left(1+r_{f}(1-\tau)\right)} \\
& n_{A}=\frac{\widetilde{V}_{t}^{\prime}}{\widetilde{V}_{t}} \frac{u^{\prime}\left(1+k^{\prime}(1-\tau)\right)}{u(1+k(1-\tau))} .
\end{aligned}
$$

(All variables are uncertain.)
Furthermore, since the market is free of arbitrage, we must have

$$
n_{B} B_{t}+n_{A} \widetilde{V}_{t}=\widetilde{V}_{t}^{\prime}
$$

Duplication

There are now three equations. Plugging them all together results in

$$
\begin{equation*}
\frac{u-u^{\prime}}{1+r_{f}(1-\tau)}+\frac{u^{\prime}}{1+k(1-\tau)}=\frac{u}{1+k^{\prime}(1-\tau)} \tag{4.10}
\end{equation*}
$$

and this is a relation between

- the cost of capital k, k^{\prime} and r_{f} before taxes,
- the tax rate τ, and
- the parameters u and u^{\prime}.

Duplication

Equation (4.10) is a no arbitrage-condition. If it is not satisfied there is an arbitrage opportunity in the market.

But: It is also a quadratic equation and such an equation has only two solutions. These are

$$
\begin{aligned}
& \tau=100 \% \text { and } \\
& \tau=0 \%
\end{aligned}
$$

For any other tax rate there must be an arbitrage opportunity. This violates our basic principle of valuation.

Intuition of the result

Our result is in fact surprising. Is there any intuition for it?
Notice that cost of capital $k^{E, u}$ and company value \widetilde{V}_{t} are related to each other (like "two sides of a coin"). By determining a relation between cost of capital and tax rate we implicitly determine a relation between value and tax rate.

But this relation is highly non-linear which is the reason for our arbitrage opportunity.

Summary

Never ever use

$$
k^{E, \mathrm{u}}=k^{E}(1-\tau)
$$

when the tax rate τ changes.

